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Ion–ion and electron–ion correlations in liquid gallium
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Abstract. The ionic and electron–ion structures of liquid Ga are investigated. The ionic pair
potential is calculated using Shaw’s optimized model potential and three different local-field
corrections: Vashishta and Singwi’s, Ichimaru and Utsumi’s, and the very recent Ortiz and
Ballone one. This latter, unlike both of the others, gives pair potentials that predict very well
the experimental structure factor of liquid Ga. Investigation of the electron–ion structure factor
and the pair distribution function shows an anomalous behaviour that is discussed.

1. Introduction

Liquid Ga exhibits a particular structure factor with a shoulder on the right-hand side of
the first peak. It is now clear that this feature is not due to inaccuracy in the experimental
results, since the data obtained by many investigators show only small differences (see
Bellissent-Funelet al (1989) and references 1 to 5 therein). This specificity has to be linked
with some other of its physical properties: its low temperature of fusion, its pronounced
tendency towards undercooling, the increase of its density on melting by about 3%, the fact
that it can solidify in at least four crystalline metastable phases, and so on. Besides this,
the shoulder moves to a subsidiary peak during the undercooling (Bizidet al 1974).

Many attempts to reproduce these structural anomalies using effective pair potentials
constructed on the basis of model potentials have been reported. Fairly good results are
obtained with empirical model potentials possessing adjustable parameters (Regnautet al
1980, Monet al 1979), but the results remain disappointing when non-local model potentials
free of fitted parameters are used (Bretonnet and Regnaut 1985). In liquid metals, the
effective pair potential is notoriously sensitive to the choice of the model potential as well
as of the screening function including the exchange–correlation corrections, and a glance at
various papers indicates that the potential can differ by an order of magnitude in the region of
its first minimum. Hafner and Jank (1990) pointed out that the use of an oversimplified form
for the potential such as Ashcroft’s raises difficulties for metals like Ga. Let us recall that, at
the scale of the atom, Ga is a trivalent metal with the s2p1 valence shell configuration and ten
d electrons in the outer shell of the ion, leading to non-negligible core-polarization effects
(Mon et al 1979). Consequently, the interaction of a valence electron with a Ga core should
be complex, and the potential used to describe it is required to be very realistic. Moreover,
when dealing with Ga, Bretonnet and Regnaut (1985) noticed the crucial importance of the
choice of the dielectric function.

In this paper, we present our results on the structure obtained for Ga when considering
the non-local optimized model potential (Shaw 1968) (OMP), free of adjustable parameters,
and a new local-field correction. Although not too recent, the OMP can still be considered
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the most realisticab initio representation available for simple liquid metals, since it is
constructed to reproduce the spectral lines of the free ion. In addition, the exchange–
correlation correction used here seems to possess the supplementary features necessary for
predicting the structural anomalies of Ga. This local-field function is based on recent Monte
Carlo calculations made by Ortiz and Ballone (1994) (OB), who used large systems and
took into account the partial spin polarization of the electrons.

The ionic structure factor is calculated using an integral equation based on the soft-
core mean-spherical approximation (SMSA) (Madden and Rice 1980) that has successfully
described the structure factor of alkali metals (Jakse and Bretonnet 1993a, b). The reliability
of the SMSA is equally well established by comparison with molecular dynamics (MD)
simulations (Waxet al 1997).

We also take advantage of the adequacy of our model potential calculations in evaluating
the electron–ion structure factor,Sei(q), that was obtained experimentally by Takedaet al
(1986). If one knows the ionic structure factorS(q), theoretical determination ofSei(q) is
straightforward, and it can provide help in elucidating features of the screening electronic
density, hidden in experimental results that are not sufficiently accurate yet. Moreover, it
could explain why liquid Ga is a good electrical conductor (Ginteret al 1986) and presents
a nearly-free-electron-like electronic structure (Indlekoferet al 1988), though exhibiting
structural peculiarities.

This article is structured as follows. In its second section, we recall essential topics
related to the determination of the effective ionic-pair potential from Shaw’s OMP and OB’s
local-field correction. In the third section, the implementation of the ionic structure factor
with the SMSA and of the electron–ion structure is explained. Our results are presented
and discussed in section 4. Finally, we give our conclusions in section 5.

2. From electron–ion interaction to ion–ion interaction

Unlike local model potentials that, in a way, depend on adjustable parameters, non-local
model potentials deal only with the spectrometric term energies of the free ion. In the
present work, we use the non-local OMP proposed by Shaw (1968), which consists of
a local coulombic electron–ion interaction plus a non-local part (we use atomic units,
h̄ = e = m = a0 = 1):

w0(r, E) = −Z
r
−

l0∑
l=0

2 [Rl(E)− r]
[
Al(E)− Z

r

]
P̂l

where2(r) is the unit step function, and̂Pl denotes the projector on thelth angular
momentum states of the core electrons. In this model, the well depthsAl(E) and the radii
Rl(E) are related by the optimization conditionAl(E)Rl(E) = Z. The bare form factor is
then given by

w0(k, q) = N〈k + q|w0|k〉 = v(q)+ f (k, q)
where

v(q) = −4πZ

q2

N

V

and

f (k, q) = −4π
N

V

l0∑
l=0

(2l + 1)Pl(cosθ)
∫ Rl

0
jl(k

′r)
[
Al(E)− Z

r

]
jl(kr)r

2 dr.
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According to Shaw (1970), the screened form factor can be written as the sum of the Hartree
contribution and of the correction due to electron exchange and correlation effects, namely

w(k, q) = wH(k, q)+1w(k, q)
where

wH(k, q) = v(q)+ vd(q)
εH (q)

+ f (k, q)+ g(q) (1)

and

1w(k, q) = −G(q)
ε(q)

[wH(k, q)− w0(k, q)] .

Here,εH (q) is Lindhard’s dielectric function, and the many-electron effects are incorporated
owing to the electron screening function

ε(q) = 1+ [1−G(q)][εH (q)− 1]

whereG(q) is the local-field correction for the conduction electrons and depends on which
type of treatment is adopted. We will come back later to the relative performances of
different tractable forms ofG(q).

When evaluating the local contributionvd(q) due to the depletion holeρd , we assume
a uniform spatial charge distribution in a sphere of radiusRM , which leads to the relation

vd(q) = 4π

q2

N

V
ρdM(q)

with

ρd = −
∑
k<kF

〈k|∂w0

∂E
|k〉

and

M(q) = 3

qRM

[
sinqRM
(qRM)2

− cosqRM
qRM

]
whereRM = (R0 + 3R1 + 5R2)/9 is a weighted mean of the core radiiRl . The depletion
hole is a consequence of the energy dependence of the model potential, and the modulating
function M(q) takes into account its spatial distribution. When omitted, the form factor
exhibits oscillations at largeq that produce an unphysical interionic pair potential.

The last term of equation (1) represents the non-local screening contribution

g(q) = 4

π2q2εH (q)

∫
f (k, q)

k2− |k + q|2 dk.

Table 1. Values of the quantities used in this work. Atomic units are used. The parametersAl
of Shaw’s OMP are given at the Fermi energy.Z∗, mE , andmk are respectively the effective
valence and the two effective masses as defined in the text, whilekF , �0, andT have their
usual meaning.

A0 A1 A2 dA0/dE dA1/dE dA2/dE

1.601 1.854 1.522 −0.386 −0.220 0.015

kF T �0 Z∗ mE mk
0.8748 323 132.694 3.1846 0.9447 0.7430
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In deriving an expression for the ion–ion interaction by standard pseudopotential
theory, it is necessary to define the scalar functionFN(q), called the normalized energy–
wavenumber characteristic, which is written similarly to the screened form factor as

FN(q) = FHN (q)+1FN(q)
with

FHN (q) = −
[
q2

4πZ∗
V

N

]2{[
1− εH (q)
εH (q)

] [
v(q)+ vd(q)

]2

+ g(q) [v(q)+ vd(q)]+ εH (q)g2(q)+ h(q)
}

and

1FN(q) =
(

q2

4πZ∗
V

N

)2
εH (q)

ε(q)
G(q) [w(k, q)− w0(k, q)]

2

where

h(q) = 4

π2q2

∫
k6kF

f 2(k, q)

k2− ‖k + q‖2
dk.

The OMP is not transferable and some care must be taken with its energy dependence.
Thus, the well depthsAl(E) have to be determined at the observed temperature and density
of the liquid metal. We followed the procedure proposed by Ese and Reisland (1973)
to obtain them. In addition, our calculations include the two massesmE andmk, which
are a consequence of the energy dependence and of the non-locality, respectively. These
masses, appearing as renormalization factors in the dielectric function and in the depletion
hole, have been found to give rise to sensible corrections in the screened form factor
and in the normalized energy–wavenumber characteristic (Bretonnet and Regnaut 1985).
Within OMP theory, it turns out thatmE can be incorporated in the effective valence
Z∗ = Z − ρd/mE . The values of the quantities entering all of these formulae and used in
this work are summarized in table 1.

Finally, the interionic potentialu(r) can be readily obtained as the sum of a direct ion–
ion interaction and of an indirect contribution stemming from the presence of the electron
gas:

u(r) = Z∗2

r

[
1− 2

π

∫ ∞
0
FN(q)

sinqr

q
dq

]
.

At this stage of the presentation of the OMP, it is convenient to give the Fourier transform
of the screening electron density around an ion that will be necessary for the calculation of
the electron–ion correlations:

nsc(q) = q2

4π

εH (q)

ε(q)
[wH(k, q)− w0(k, q)] . (2)

Now, we come to the question of the local-field correction. Since the simplest form
of the dielectric functionεH (q) suffers from the absence of exchange–correlation effects,
which are found to have a great influence on the liquid structure, we must include them
properly by means of the functionG(q). Many expressions forG(q) have been proposed
in the literature, even recently (Moroniet al 1995, Richardson and Ashcroft 1994), but here
we focus on just three of them: the local-field functions of Vashishta and Singwi (1972)
(VS), of Ichimaru and Utsumi (1981) (IU) and of OB. The first two, known to satisfy
the self-consistency conditions in the compressibility sum rule for the uniform electron
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gas, are tractable and have been extensively used during the last decade. The third local-
field correction is drawn from the calculations of Ortiz and Ballone (1994) based on the
latest developments of the quantum Monte Carlo method that provide a very sophisticated
description of the many-body properties of the homogeneous electron gas. Bretonnet and
Boulahbak (1996) proposed the following analytical form for the OBG(q):

G(q) = 1− g(0)− exp(−z)
6∑
n=0

Cµ1F1(1− µ/2, 3/2, z)

where

z = 1

4

(
9π

4

)2/3
q2

ak2
F

and

C0 = B

2

√
π/a

C1 = C − aA
a

C2 = 3D − 2aB

4

√
π/a3

C3 = 2E − aC
a2

C4 = 3

8
(5F − 2aD)

√
π/a5

C5 = −2E

a2

C6 = −15

8
F
√
π/a5.

All relevant parameters are given in table 1 of their paper. The degenerate hypergeometric
function 1F1(1−µ/2, 3/2, z) has to be implemented up to the eighth order inz, so that the
stability of G(q) is reached. Incidentally, it is easy to see that the present expression for
G(q) can be written in a form recalling that of VS, when the degenerate hypergeometric
function is developed.

3. Ion–ion and electron–ion correlation functions

We now outline the steps followed in obtaining a good approximation to the correlations in
liquid Ga whose ions interact via the effective pair potential given in section 2. The integral
equation under consideration is based on a combination of the Ornstein–Zernicke relation

g(r)− 1= c(r)+ ρ
∫

[g(r)− 1]c(|r − r′|) dr′

with the auxiliary equation of the SMSA for the direct correlation function

c(r) = {1− exp[βu1(r)]} g(r)− βu2(r).

It has been shown (Madden and Rice 1980) that the SMSA is an integral equation
particularly appropriate for dense fluids interacting with Lennard-Jones potentials or with
potentials for liquid metals, if the decomposition of the potentialu(r) is that of Andersen
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et al (1972). In effect, for continuous potentials, it is well recognized that the most useful
separation must be done at the position of the first potential minimumr0:

u1(r) =
{
u(r)− Vmin if r < r0

0 if r > r0

and

u2(r) =
{
Vmin if r < r0

u(r) if r > r0.

The reason for the success of this decomposition lies in the fact thatu1(r) gives rise to a
purely repulsive force responsible for the packing constraints on the arrangement of ions,
while u2(r) corresponds to a long-range one that greatly influences the thermodynamics.

It is worth mentioning that the SMSA does not involve any variational parameter or
mixing function ensuring thermodynamical consistency. As a first consequence, the only
unambiguous test to which we can subject this integral equation is the comparison of
its structure factor results with those of simulation for the same effective pair potential.
Secondly, the SMSA does not allow one to determine the thermodynamic properties of
the actual system, in contrast to, for instance, the hybridized mean-spherical approximation
(Bretonnet and Jakse 1992). Here, we did not use such an alternative improved integral
equation requiring the knowledge of the internal energy or of the pressure, for the simple
reason that the calculation of the volume-dependent energy with the non-local OMP of Shaw
is intractable.

To gain precision and save time, we use the combination of the Newton–Raphson and the
successive-substitution methods, proposed by Labiket al (1985), for solving the integro-
differential equation set. This procedure, presented by Bretonnet and Jakse (1994), has
already demonstrated its rapidity and its efficiency.

Once the ion–ion pair correlation function is obtained with the SMSA, the ionic structure
factor can be calculated by Fourier transformation:

S(q) = 1+ ρ
∫ [

g(r)− 1
]

eiq·r dr. (3)

In fact, pure liquid metals are known to be binary mixtures of ions and electrons, and it is
well established that both ion–ion and electron–ion structure factors can be determined from
neutron scattering and x-ray diffraction experiments if they are carried out with sufficient
accuracy (Egelstaffet al 1974). Since recent improvements were made in these techniques,
several experimental determinations of electron–ion correlation have been published by a
Japanese group, especially for liquid Ga (Takedaet al 1986). On the other hand, there
have been some theoretical approaches to the correlation functions for ions and electrons in
liquid metals (Hoshino and Watabe 1992, Chihara 1987). It turns out that the information
contained in the electron–ion correlation refers equally to the screening electron density
nsc(q) and the ionic structure factorS(q), which must be determined in a self-consistent
way. Within the linear screening approach, the electron–ion pair correlation functiongei(r)

and the electron–ion structure factorSei(q) are given by (Cusacket al 1976, Hoshino and
Watabe 1992)

gei(r) = 1+ Z
1/2

ρ

1

8π3

∫
Sei(q)e

iq·r dq

and

Sei(q) = Z−1/2nsc(q)S(q)
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wherensc(q) andS(q) are those of equation (2) and equation (3), respectively. Theoretical
determination ofgei(r) can thus provide a useful comparison with experiments, although
certain precautions must be taken when analysing the curve ofgei(r) in the core region,
since the pseudo-wave-function is used instead of the actual wave-function in the model
potential theory. So, the charge density calculated within the cores with this formalism is
not the real one, but a pseudo-density.

Figure 1. Interionic pair potentials obtained with the three dielectric functions considered.
Hartree’s screening does not include any exchange or correlation effect.

4. Results and discussion

In figure 1, we show the sensitivity of the pair potential to three different local-field
functions. Among them, two have been extensively used for simple metals—namely, the
screening function of VS, which has the virtue of satisfying the self-consistency conditions
over the entire range of metallic densities, and that of IU that reproduces the Monte Carlo
results. In addition, the third local-field function, discussed in section 2 and referred to as
the OB function, is used for the first time in the present form (Bretonnet and Boulahbak
1996). It is worth mentioning that most local-field corrections are significantly different
from one another, especially beyondkF (figure 2). This non-uniqueness ofG(q) is the
mark of our ignorance about the exact nature of the exchange–correlation effects within the
uniform electron gas. Such differences inG(q) are responsible for the great uncertainty
concerning the interionic potential in the region around the first and second neighbours.

Going from one to another local-field function significantly changes the character of the
potential in the range 5 to 10 au for Ga. The features of the potentials with VS’s and IU’s
local-field functions are now well known, with a first-minimum depth considerably smaller
for IU’s than for VS’s screening. With OB’s local-field function, the interesting point to be
noted is a surprisingly unconventional pair potential with two positive first minima located
at 5 and 8 au, respectively. Comparing the potentials corresponding to IU’s function and
OB’s function, one notices a similar first minimum and an identical sign for du/dr between
the first two minima. As will be seen later, this behaviour drastically modifies the profile of
the main peak ofS(q). For Ga, having a low melting point, the weak ionic kinetic energy
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Figure 2. Local-field correctionsG(q) evaluated following various schemes. The parameterrs
is the radius of the average volume per electron, and its value is 2.1939 au for Ga.

Figure 3. Ionic structure factors obtained using the three dielectric functions mentioned, and
compared with the experimental results of Waseda (1980) and of Bellissent-Funelet al (1989).

( 3
2kBT ' 1.5× 10−3 au if T = 300 K) is not always sufficient to overcome such potential

barriers and, therefore, the liquid structure is very sensitive to the shape of the ion–ion
potential in that region.

The impact of the different interionic potentials on the ionic structure factor, when
calculated using the SMSA, is clearly illustrated in figure 3. Important differences appear



Ion–ion correlations in liquid gallium 4025

over the wholeq-range, but they are more pronounced in the first-peak region. This is
specific to Ga, since in the cases of alkali metals or of Al, the influence ofG(q) is sensitive
only in the low-q region ofS(q). Both VS’s and IU’s screenings give rise to first peaks
of S(q) whose shapes are greatly different from experimental results. Such shapes were
already observed by Bretonnet and Regnaut (1985). On the other hand, OB’s screening
function allows one to reproduce remarkably well the shoulder on the main peak ofS(q),
leaving the amplitudes of the oscillations and of the first peak still uncertain.

Figure 4. Ionic pair distribution functions obtained with the SMSA and the three dielectric
functions mentioned, and compared with Waseda’s experimental results (Waseda 1980).

We now turn to examining the pair correlation function calculated with the SMSA, for
the three interionic potentials under consideration (figure 4). The positions and heights of
the first peak are similar for the three screening functions, and the differences occur mainly
in the phase of the oscillations. It is not surprising to observe the strong change beyond
the first peak, for the simple reason that it corresponds to the region where the potential is
affected by the exchange–correlation effects. As far as the agreement between theory and
experiment is concerned, one can easily see that the curve stemming from the OB function
fits the second and third peaks ofg(r) fairly well. The remaining part of the curve, and
in particular the range between the first two peaks, is not satisfactorily predicted, although
OB’s screening seems to give the best results. This indicates the great difficulty encountered
in describing and explaining the properties of Ga.

In fact, there is the standard question of the validity of the results when obtained with
an approximate integral equation. A useful test of the approximation can be realized if they
can be compared with some ‘exact results’ from computer experiments based on the same
realistic interionic potential. Therefore, we performed MD simulations of liquid Ga with
the same potentials (figure 5). A comparison of the MD and SMSA results with experiment
shows that both IU’s and VS’s results have worsened while OB’s results are quite stationary
when using MD. This confirms the fact that OB’s screening gives better results than both
of the others.

The improved agreement of the experimental structure factor and that calculated with
OB’s function emphasizes the importance of using a realistic dielectric function. As regards
the remaining disparities inS(q), irrespective of the agreement that we have obtained with
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Figure 5. Ionic pair distribution functions obtained with MD and the three dielectric functions
mentioned, and compared with Waseda’s experimental results (Waseda 1980).

the new local-field function of OB, we cannot, unfortunately, provide a definitive judgment.
Now, coming to the electron–ion correlation, we take advantage of both the electronic

screening density and ionic structure factor to determine the electron–ion structure factor
Sei(q), which describes the correlation between the local density of electrons and that of ions.
As recalled in section 3, a reliable determination of the electron–ion correlation in liquid
metals is, in principle, possible by combining high-resolution measurements performed with
the neutron scattering and x-ray diffraction methods. Recent progress in these diffraction
techniques has motivated some investigators (Takedaet al1986) to carry out an experimental
determination ofSei(q) for Ga. However, care must be taken when dealing with these
results, since the indicated experimental uncertainty (1Sei = ±0.2) is, in the case of Ga, of
the order of the amplitude of the long-range oscillations and of half the height of the first
peak. Consequently, the delicate experimental determination of electron–ion correlation in
liquid metals is especially difficult in the case of liquid Ga, and these results can only be
considered as indicative.

Since the determination ofSei(q) requires the knowledge of the electronic screening
density,nsc(q), and of the ionic structure factor,S(q), we performed the calculations of
Sei(q) in a consistent manner, withS(q) andnsc(q) determined with the same screening.
We have plottednsc(q) and Sei(q) in figure 6. While fornsc(q) the particular screening
function used seems immaterial,Sei(q) is very sensitive to the choice ofG(q), and this is
mainly due toS(q). The curves forSei(q) obtained show a sharp positive peak followed by
a small negative minimum. They are quite different from those obtained for alkali metals
by Wax et al (1997), who followed the same approach. If we compare our results with
the experiments of Takedaet al (1986), the curves appear to be very different. This is not
surprising, in view of the high value of the experimental uncertainties. This has already
been pointed out by Ishitobi and Chihara (1992), who demanded a better accuracy in the
experimental determination ofSei(q), so as to be able to discuss their analytical results.
Moreover, it is worth mentioning that, in order to refine their experimental results for Mg,
Takedaet al (1994) applied the back-Fourier-transform technique to smooth the curve and
damp the spurious oscillations. The corrected curve appears then to be very different from
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Figure 6. The reciprocal screening charge densitynsc(q) and electron–ion structure factorSei (q)
for three types of dielectric screening. The experimental results of Takedaet al (1986) are shown
for information. The experimental uncertainty reported by these authors is1Sei = ±0.2.

Figure 7. Calculated electron–ion pair distribution functionsgei (r) obtained using three
dielectric functions, and the experimental ionic pair distribution function from Waseda (1980).

the unrefined one and has a shape very similar to our calculated one for Ga. Consequently,
we should not reject our results simply on the basis of a comparison of them with their
unrefined experimental counterparts.

To get better insight into the electron–ion correlation, we presentgei(r) and g(r) in
figure 7. An important point that we have to remember is that, sincegei(r) is calculated
with the pseudo-wave-function associated with the pseudopotential, it has no real meaning
inside the core, since the pseudo-wave-function departs from the true one in the core volume.
Furthermore, the use of an energy-dependent potential introduces a depletion hole charge
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localized in the ion core. We supposed it to be uniformly distributed within a core radius
RM = 1.84 au. Therefore, a discontinuity ofgei(r) appears atr = RM that reflects the
step function used to describe the distribution of the depletion hole charge in the core.
So, we have to concentrate in our discussion on the part of the curve corresponding to
r > RM . First, we can notice that, thoughSei(q) is very sensitive toG(q), gei(r) is
rather less affected by it. But the most striking feature is the fact that, contrary to what
happens in the case of alkali metals, the maximum ofg(r) does not coincide with the first
minimum ofgei(r), but rather with its first peak. This means that the valence electrons are
located at distances that correspond to the position of the first ionic neighbours. It seems
rather improbable that electrons are concentrated inside the ionic cores, and we envisage
two possible explanations of this peculiarity of the electron–ion structure. The first one is
built up from an experimental observation by Gramschet al (1991), who interpreted their
positron annihilation measurements for liquid Ga as being a consequence of the creation of
trapping centres on melting, though the real nature of these traps is not currently understood.
So, electrons could occupy such interstitial volumes. The second one involves consideration
of the fact that Ga cores carry a charge three times higher than that carried by the alkali
ones. Consequently, they are more attractive, and electrons are closer to the cores. What
we observe would not be electrons inside the cores, but rather electrons ‘stuck’ around
them. Nevertheless, our results remain surprising, and require further experimental, as well
as theoretical, investigations before they can be considered as confirmed.

5. Conclusion

The purpose of the present investigation was to predict the anomalies of the ionic structure
of liquid Ga. It turns out that the use of the OMP with the OB local-field function provides a
reliable interionic potential capable of giving the structure factor with a very good agreement.
The calculations are done in the context of a non-local model potential, and do not represent
an attempt to obtain the best agreement with experiment by means of adjustable parameters.

There are, however, noticeable deviations from the experimental pair correlation
functions in the range between the two first peaks. The difficulty in reproducingg(r)

in that range may have several explanations.

(i) The possible drawbacks of the OMP—although this model potential, based on firm
theoretical foundations, is an optimized potential incorporating full non-locality and energy
dependence. It has shown a great ability to reproduce numerous physical properties for
solid and liquid metals in the course of the last two decades. We put much faith in it.

(ii) Lacking terms in the interionic potential: in view of the paper of Monet al (1979),
one may anticipate that the interionic potential of Ga should be augmented with a term
reflecting the core–core exchange repulsion, which can be sufficiently well approximated
by the Born–Mayer potential, and another term corresponding to the core–valence exchange
contributions. However, according to Dharma-wardana and Aers (1983), no significant
improvement in the quality ofS(q) is obtained for Al when such terms are included. At
this time, it is not possible for us to judge the relative merit of these contributions.

(iii) The inaccuracy of the local-field function: the form of the interionic potential is
very sensitive to the details of the structure of the homogeneous electron gas. Our results
show that the improved self-consistent treatment of many-electron correlation effects due
to OB brings the calculated structure of Ga into better agreement with experiments than
the other local-field functions. Effort devoted to reconsideration of the screening effects
together with exchange–correlation effects seems to be the way to improve this agreement.
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Our complementary study of the electron–ion correlation gives interesting results.
Though a comparison with experiment is difficult because of experimental uncertainties,
and even if the determination ofgei(r) is valid only for r > RM because of formalism
requirements, our calculations have pointed out an outstanding feature. Indeed, it appears
that gei(r) has a maximum at the position of the first peak ofg(r). This striking property
requires confirmation by other investigations of both experimental and theoretical kinds, but
it could be interpreted, following Gramschet al (1991), in terms of interstitial free volumes
that electrons could occupy.
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